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Abstract

An approach combining the information generated from different stochastic differential equations was developed
to improve the predictive qualities of stem taper and volume. The stochastic differential equations and the stem taper
and volume models were fitted to data from Scots pine and Norway spruce trees that were collected from across the
entire Lithuanian territory. New models deduced from the Gompertz and Ornstein-Uhlenbeck shape stochastic differential
equations were tested against the classical Kozak’s stem taper model, g-exponential segmented stem taper model, classical
Schumacher-Hall’s volume model, and g-exponential volume model based on allometric and geometric concepts.
Comparison of the predicted stem taper and stem volume values with those obtained using regression fixed-effects models
demonstrated the predictive power of the stochastic differential equations models.
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Introduction

Predictive forestry is a specific application of the
field of mathematical modelling to describing the be-
haviour of an individual tree and stand under a given
set of environmental conditions. Height and volume
predictive models have been widely accepted as in-
formative tools that provide quick and cost-effective
assessments of tree growth for product development,
risk analysis, and recreation purposes. In this work,
we study individual tree growth models that take into
account the effects of random environmental pertur-
bations on growth. Traditionally, the relationship be-
tween volume, height and diameter has been modelled
based on simple linear and nonlinear regressions (Ta-
bacchi et al. 2011, Serinaldi et al. 2012). The base as-
sumption of these regression models is that the ob-
served variations from the regression curves that are
independent of covariate values would be realistic if
these variations were due to measurement errors.
However, this assumption is unrealistic, as these var-
iations are due to random changes in growth rates
induced by random environmental perturbations. Stem
volume and stem phytomass data always exhibit het-
eroscedasticity (Parresol 1999, Tabacchi et al. 2011),

the error variances are not constant across all obser-
vations. With these considerations in mind, we present
a methodology for taper analysis as an alternative to
other statistical techniques. In this paper, the devel-
oped novel stochastic differential equation model is
not affected by the limitations described above.
Taper equations are widely used in forestry to
estimate the diameter at any given height along a tree
bole and, therefore, to calculate the total or merchant-
able stem volume (Alegria and Tome 2011, Oz&elik et
al. 2011). The classical taper model has been exten-
sively studied to predict various diameter dynamics
behaviours. One crucial element in taper models is the
functional response that describes the relative diame-
ter of tree stem consumed per relative height for giv-
en quantities of diameter at breast height D and total
tree height H. The most commonly studied taper rela-
tions range from simple taper functions to more com-
plex forms (Kozak et al. 1969, Demaerschalk 1972, Max
and Burkhart 1976, Kozak 2004, Rupsys and Petraus-
kas 2010c, Petrauskas et al. 2011). Taper curve data
consist of repeated measurements of a continuous di-
ameter growth process relative to the height of indi-
vidual trees. These longitudinal data have two char-
acteristics that complicate their statistical analysis:
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a) within-individual tree correlation that includes the
data measured on a single tree and b) independent but
extremely high variability between the experimental
taper curves obtained for different trees. Mixed-effects
models incorporate the variability between individual
trees using the expression of the model’s parameters
in terms of both fixed and random effects. Random
effects are conceptually random variables. They are
modelled as such by describing their distributions. A
large number of mixed-effects taper models have been
published (see, Yang et al. 2009, Trincado and Burkhart
2006, Westfall and Scott 2010, Ozéelik et al. 2011).

The increasing popularity of mixed-effects models
can be attributed to their ability to model total varia-
tion by splitting the variation within- and between-in-
dividual tree components. We propose to model these
variations and nonlinearities using stochastic differen-
tial equations that are deduced from the standard de-
terministic growth function by adding random variations
to the growth dynamics (Suzuki 1971, Tanaka 1986,
Rupsys et al. 2007, 2011, RupSys and Petrauskas 2010a-
b, 2012). We thus consider stochastic differential equa-
tion models with drift and diffusion terms that can de-
pend linearly or nonlinearly on state variables. The basis
of the work is a segmented model of the tree taper,
which uses different models for different parts of the
stem to overcome local bias. In this paper, an effort has
been made to develop two stochastic differential equa-
tion segmented stem taper models. We assume that the
lower part of a tree trunk can be modelled by a nonlin-
ear dynamical system with multiplicative noise (called
the Gompertz stochastic differential equation), in which
the random perturbations of the growth rate are pro-
portional to the relative diameter. Additionally we as-
sume, that the middle and upper parts can be modelled
by a linear dynamical system with additive noise (called
the Ornstein-Uhlenbeck stochastic differential equation),
in which the perturbations in the relative diameter do
not depend upon the relative height.

The aim of this study is to communicate the ad-
vantages of using stochastic differential equations in
the analysis of taper models and to demonstrate how
an adequate model can be developed. In this paper,
attention is restricted to homogeneous stochastic dif-

ferential equations of the Gompertz, and Ornstein-Uh-
lenbeck types (Gutiérrez et al. 2008, RupSys and
Petrauskas 2010a, Picchini et al. 2011), the solutions
of which produce the regression terms of the fixed
effects model.

Materials and methods

Data

We focus on the modelling of Scots pine (Pinus
Sylvestris) and Norway spruce (Picea Abies) tree data
sets. Scots pine and Norway spruce tree stands domi-
nate Lithuanian forests, grow on Arenosols and Pod-
zols forest sites and cover 725,500 ha, and 427,000 ha,
respectively. Stem measurements for 598 Scots pine trees
and 1021 Norway spruce trees were used for stem vol-
ume and taper model’ analyses. All data were collected
during 1979-2008 across the entire Lithuanian territory,
except for Kursiy Nerija National Park (latitude, 53°54°
- 56°27° N; longitude, 20°56” - 26°51” E; altitude, 10 -
293 m). Mean temperatures vary from -16.4 C° in winter
to +22 C° in summer. Precipitation is distributed
throughout the year, although it occurs predominantly
in summer, the average precipitation is, approximately,
680 mm per year. Temporary circle test plots were placed
in each of 42 Lithuanian state forests in randomly se-
lected clear-cutting areas. The diameter over the bark
and the diameter under the bark of each stem in a plot
were measured at regular intervals, starting from the
diameter of the root collar and at heights 1 metre, 1.3
metres, 3 metres, 5 metres, etc. All section measure-
ments include 7,783 data points (Scots pine trees) and
12,999 (Norway spruce trees). The diameter was meas-
ured to an accuracy of 1 mm. A random sample of 300
Scots pine trees (out of the total sample of 598 trees)
was selected for model estimation, and the remaining
data set of 298 Scots pine trees was utilised for model
validation. The Norway spruce sample data set of 1,021
trees was also randomly divided: 497 trees were used
for model estimation and 524 were used for model val-
idation. Summary statistics for the diameter over the
bark at breast height (D), total height (H), volume (V)
and age (A) of all the trees used for model estimation
and validation are presented in Table 1.

Data Number Min Max Mean St. Number Min Max Mean St. Table 1. Summary statistics of the data
of trees Dev. of trees Dev. .
sets for the Scots pine and Norway
Estimation Validation P .
spruce trees across Lithuania
Scots pine
D(cm) 300 6.3 53.8 242642 9.8518 298 3.8 58.5 24.9694 10.0412
H (m) 300 5.6 345 205669 5.4710 298 4.2 353 21.5621 5.8824
V(m3) 300 0.0109 3.2139 0.5832  0.5745 298 0.0031 3.1957 0.6449  0.5642
A (yr) 300 23 161 77.1733 25.7327 298 19 140 716 29.6
Norway spruce
D cm) 497 7.8 524 22.0887 8.5145 524 7.0 498 21.7330 8.2975
H (m) 497 7.6 33.1 20.5564 54908 524 7.7 339 20.5863 5.1744
v(m®) 497 0.0183 29775 0.5285  0.4853 524 0.0230 2.9945 0.5113  0.4652
A (yr) 497 34 120 67.2937 19.2336 524 30 150 66.7233 20.4064
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In our analysis, we interpret the stem volume cal-
culated by equation (1) as the observed volume

(1

__T (g(dii+d|i+l+dik'dlk+l)'|‘\k +di2r\fl'|“"rl

‘ 40000[ ra 3 3 i
where d is the diameter over the bark (cm) for sec-
tion k of tree i and L, is the section length (m).

Stochastic Differential Equation Framework

The stochastic differential equations stem taper
model, which accounts for the variations from the
deterministic predictions that occur in a given longi-
tudinal data series of individual tree growth was used
to fit the longitudinal data series of the growth of each
individual tree. The model used in this work incorpo-
rated environmental stochasticity, which accounts for
variability in the diameter growth rate that arises from
external factors (such as soil structure, water quality
and quantity, and levels of various soil nutrients) that
equally affect all the trees in the stands. In the diffu-
sion stem taper model, the changes in the diameter over
the bark between two consecutive heights are repre-
sented by a scalar diffusion process Y(x) that is in-
dexed by relative height x and given by the [td (1942)
stochastic differential equation. Consider a one-dimen-
sional continuous process Y(x) evolving in M differ-
ent experimental units (trees) randomly chosen from a
theoretical population (tree species). We suppose that

the dynamics of the relative diameter Y’ =%i subject

to the relative height x =%|i is expressed by a sto-

chastic differential equation, where is the diameter
over the bark at any given height 4, D is the diameter
at breast height over the bark, H is the total tree height
from ground to tip. The first utilised diffusion proc-
ess of relative diameter dynamics is defined using the
following Gompertz form (Gutiérrez et al. 2008, Rupsys
and Petrauskas 2010a)

dY ) =[ogY' ()= BoY () Inty' (X DX +oY' (X dWL (X) 2)
PY () =vp) =1, i=1..M,

where Y(x) is the value of the process at the relative
height yx Zx(i) and «a_, B, and o, are fixed effects pa-
rameters (identical for the entire population of trees).
The W(i;(xi), i=1,...,M — are mutually independent
standard Brownian motions. The second model of rel-
ative diameter dynamics is defined using the follow-

ing three parameter Ornstein-Uhlenbeck form (Picchi-
ni et al. 2011)

dy'(x)= aO—YéX)}xi+codV\é(xi), 3)
. . . (o)
PY'(x)=y) =1> 1=L..M,

where @, B, and o, are fixed effects parameters (iden-

tical for the entire population of trees) and Wci,(xi),

i=1,...,M — are mutually independent standard Brown-
ian motions.
Assume that tree i is measured at n+1 discrete

relative height points (x(i), xl...,x,Zi) and relative diam-

eter points (y(i),y{,...,yﬂ\ ), v (x‘j)z V‘j, i=1,....M. The
transition probability density functions of the random
variable Y’ (x'J IY(Xij_1)= yij_1 of two different relative di-

ameter stochastic processes defined by Eq. (2)-(3) can

be deduced in the following form because the stochas-

tic Gompertz process is lognormal (Gutiérrez et al. 2008)
1
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and because the stochastic Ornstein-Uhlenbeck proc-
ess is normal (Picchini et al. 2011)
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The conditional mean and variance functions

m(x |-) and W(xi|‘) (x'1is the relative height of ith tree)

of the stochastic processes (2)-(3) are
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for the stochastic Gompertz process (Gutiérrez et al.
2008), and for the stochastic Ornstein-Uhlenbeck proc-
ess, the conditional mean and variance functions

m(x|), w(x|) are (Picchini et al. 2011)

rTb(Xi|V<i>,Oto»ﬁo)=Véexp£—ﬁL;]+aoﬂo[l—exg{—;—;j] (12
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Wo¥[60.00) = T”[l‘] (13)

In this paper, a segmented stochastic taper proc-
ess was used that consists of three stochastic differ-
ential equations defined by Eq. (2)-(3). This process
conforms to the paradigm of stem taper curve that
marks three different stem sections along the bole (two
points of inflection); the lower section corresponds to
a neiloid shape, the middle section corresponds to a
parabolic shape, and the upper section corresponds
to a conic shape. Max and Burkhart (1976) proposed
a segmented polynomial model that uses two joining
points to link the three different stem sections. Fol-
lowing from this, the non-continuous at the joining
point 0.75 stem taper stochastic differential equations
Model 1 is defined in the lower section by the Gom-
pertz form Eq. (2), the middle section by the Ornstein-
Uhlenbeck form Eq. (3), and the upper section by the
Ornstein-Uhlenbeck form Eq. (3)

[ Y (X)) = B Y XY In(Y (X AKX+, Y (X )W (%),
PY'(0)=y,)=1,X <0.15,

(14)

dYi(x) = [am - Y;;X‘) de' 00, AW (X)),
ol

P(Y'(0.15) = My (0.15]Y;. g Be.06) =1, 0.15 < X' <0.75,

trg, — O i o AW, (X'), X1 >0.75, PCY' (1) =0) = 1,
o2

where «, B, 0, @, o1 To1, o /302,. o,, are fl)red

effects parameters (identical for the entire population

of trees) and W (X' ), W (X' ) > Wo2(X') 5 i=1,...,M — are
mutually independent standard Brownian motions. The
joining points were selected at 0.15 and 0.75 for both
tree species, as the fit statistics produced the best
values for these points. These values of the joining
points are very close to the values utilised by Max
and Burkhart (1976).

Using Eq. (14) and assuming that the stem butt

was free (p(y' (0)=y)=1, (7 is an additional fixed ef-

fect parameter identical for the entire population of
trees) we define stem taper Model 2.

Therefore, we need to estimate «, B, o, %y
o0 Op1 @Qys By O,y v using all the data iny, x, si-
multaneously, where \_/:(l/ ’Y Y ", x=(x ,f,...,xM),

V' =V Yises V) s X =06:X%,) . The Model 1 pro-
posed in this paper uses the one tree-specific prior

relative diameter v, (this known initial condition re-

quires that the diameter over the bark is measured at
a stem height of 0 m).

In the latter, we define an approximation of the
trajectories of the diameter’ and its variance’ for Mod-

els 1-2 using the following form

di(hD,H.dp)

D- n‘t(—— aG,ﬁG,O'G) —<0155
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D’ -wg(ﬁ‘y,ae,ﬁe,o—@), ﬁso.ls,
) AAA A h Ao h
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A
AA
where the parameter estimators « ﬁG, » Qs Boys

a,, /302, ~ )/ are obtained usmg a maximum like-
11h00d procedure.

Maximum Likelihood Estimators and Data Fitting
In this paper, we apply the theory of a one-stage
maximum likelihood estimator for the stochastic differ-
ential equations stem taper Models 1-2. To perform the
maximum likelihood estimators for all the trees

(i=1,...,M), an extra point x =0.15,

VII :nb(o'lqy(i)’aerﬁevo-e), for kzl, or

=me(0.13y.05.B5.05), for k=2 is utilised. As both
models have closed form transition probability densi-
ty functions (4), (7), the log-likelihood function for
the stem taper Models 1-2 is given as

L(6")= 2( Y In(R, (¥, X||Y . X

i=1

(19)

+ Z]n(p (y X‘l i 11 oy s ﬁor o r))+ Z ln(po(yl ’1_Xllly‘rvl’X‘J-l’aol’ﬂol’aol))
il x2075
<ll7

12065 Bs>05))
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. pl_
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An essential feature of a stem taper model is its
ability to reproduce not only the diameters over the
bark at any given height but also the merchantable
volume. Thus, to assess the performance of our de-
veloped stem taper Models 1-2, we present in this
section two alternative regression stem taper models
and two alternative regression stem volume models.
We shall also fit the parameters of the alternative
models to estimation data set, with the aim of com-
paring our developed model with both the regression
stem taper and volume models. The alternative stem
taper and volume models were fitted to the estimation
data using a least-squares technique. All calculations
were implemented in the symbolic computational lan-
guage MAPLE.

Two alternative models (described below) were
used to predict the stem volume: the three-parameter
Schumacher-Hall (1933) model (Eq. (20)) and the six-
parameter g-exponential model (Eq. (21)) developed by
Rupsys and Petrauskas (2010c¢)

V=ﬁlDﬂ2Hﬂ‘, (21)

1

_antl g B "
V=p8H" B, 5 (—exp(1-Bs)BDyy | (22)

5

a, if a=0,

a =
where [al, {o, if a<0

B,-B, are parameters estimated

from the data.

Two alternative models (described below) were
used to predict the stem taper: the variable-exponent
single continuous function nine-parameter model (22)
developed by Kozak (2004) and the q-exponential seg-
mented eight-parameter model (23) (RupSys and
Petrauskas 2010c)

d= B DH R P X P e X D B (22)
A
- h y
R o AL peld -
where X 1—(p)% , Z o Q=1-2"> p=lH,, ﬁl B,

are parameters estimated from the data;

B(z-D+ [34(22 -1, if z2a

1

d=pD" { B (23)

s =
s _,B_(l_ exp((l— ﬂs)ﬁﬂ))} >

7 +

where S -f, are parameters estimated from the
data.

The performance statistics of the stem taper equa-
tions for the diameter and the volume included four
statistical indices: mean absolute prediction bias
(MAB), precision (P), the least squares-based Akaike’

(1974) information criterion (AIC), and a coefficient of
determination (R?)

MAB:Z
%

SRk

n A 2
AIC=nIn(MSE)+2p, MSE=—— (vi—vij . (26)
N=pPiz

Y, - ﬁ‘ , (24)

(25)

=R

Yov v

R =1-H5—
-y’

i=l

where 7 is the total number of observations used to
fit the stem volume and taper models, is the number
of model parameters, and y,, J/’\w and y are the meas-
ured, estimated and average values of the dependent
variable (stem volume, diameter over the bark), respec-
tively. The AIC can generally be used for the identifi-
cation of an optimum model in a class of competing
models (Akaike 1974). The first term on the right hand
side of the AIC (Eq. (26)) is a measure of the lack-of-
fit of the chosen model, while the second term meas-
ures the increased unreliability of the chosen model
due to the increased number of model parameters.
To assess the standard errors of the maximum like-
lihood estimators for stochastic differential equations
stem taper Models 1-2, a study of the Fisher (1922)
information matrix was performed. The asymptotic
variance of the maximum likelihood estimator is given
by the inverse of the Fisher’ information matrix, which
is the lowest possible achievable variance among the
competing estimators. By defining p (6 %=In(L (6"),
where k=1,2, L (8") is defined by Eq. (19), the vector

0’ Dk(ek) !
00,90 |’

@7

K
Dk Y E%, and the matrix pk(QI< )’ E[

¥ N L)@ H .
we get that n?| 0.-0* |> N(©.[i©*)]"), where the Fish-

er’ information matrix is

(0= E(p’(6"p’(0))= —Ep”(6"). (28)

The standard errors of the maximum likelihood
estimators are defined by the diagonal elements of the

matrix [i(gk)]’l, k=1,2.

Results

Using the estimation data set, the parameters of
stochastic differential equations stem taper Models
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1-2 were estimated by the maximum likelihood proce-
dure and the parameters of the regression stem vol-
ume and taper models (20)-(23) were estimated by the
least squares estimation technique. For the g-exponen-
tial segmented taper model defined by equation (23),
a joint point was calculated at 0.52 for Scots pine trees
and 0.46 for Norway spruce trees, as the fit statistics
produced the optimum values at these points. Estima-
tion results are presented in Table 2. All parameters
of the Models 1-2 are highly significant (p<0.001).

The dashed line in Figure 2 that was generated by
the Nadaraya-Watson (1964) kernel regression indicates
the bias between the observed and predicted volumes.
The stem volume predictions calculated by taper Mod-
el 1 also exhibited some biases when the predicted
volume was more than 2.0 m* (for both tree species) but
these biases are smaller than those exhibited by the
other volume models. Graphical diagnostics of the re-
siduals for the stem volume predictions indicated that
the residuals calculated using the stochastic differen-

Table 2. Estimated parameters

. Eq. B B2 Bs Bs Bs Bs Br Bs Bo B1o
(standard errors in parenthe-
ses) of all models applied to Scots pine
the stem analysis data sets* M. 1 22877 200825 0405 -0.3914 21953 01815 25249 3529 0.1919 )
(0.0504) (0.7822) (0.0096) (0.0909) (0.6134) (0.0033) (0.0464) (0.0173) (0.0047)
M.2 22753 205382 04081 -0.3755 20418 01837 25249 03529 01919  1.2031
(0.0795) (1.0411) (0.0100) (0.9920) (0.5375) (0.0033) (0.0464) (0.0173) (0.0047) (0.0155
(20) 58*10° 1.8804 09723 -
(4.2*10°% (0.0276) (0.0450) B ° ° B ° )
1) 00044 09762 -12917 02342 00238 0.1254 ) ) ) -
(3.5*10% (0.0328) (0.9863) (0.0234) (0.0068) (0.1856)
(22) 09279 09403 00846 04081 00291 03887 -07610 -00024 0.0536 -
(0.0204) (0.0057) (0.1085) (0.0103) (0.0357) (0.0089) (0.2283) (9.4*10% (0.0150)
(23) 14205 09290 13403 -16591 03485 41716 -07398 13.1119 ) -
(0.0154) (0.0031) (0.0744) (0.0453) (0.0271) (0.1518) (0.0263) (0.8011)
Norway spruce
M4 13307 249216 02743 -0.7862 250479 0.1541 24675 0.3682 0.1994
: (0.0224)  (0.6785) (0.0051) (0.0125) (6.8668) (0.0020) (0.0358) (0.0146) (0.0035)
M2 14196 289738 02855 -0.7963 37.8298 0.1550 24675 03682 0.1914 12445
(0.0556)  (1.3727) (0.0066) (0.0111) (10.992) (0.0020) (0.0358) (0.0146) (0.0035) (0.0176)
(20) 3.0*10° 17267 1.3678 - - - - - - -
(2.9%10°)  (0.0245) (0.0432)
(21) 0.0022 13797 05622 01401 00475 07016 - - - -
(0.0004)  (0.0299) (0.381) (0.0107) (0.0841) (0.2374)
(22) 09206 09343 00983 04560 -04205 04500 15364 00223 -0.2021 -
(0.0184)  (0.0060) (0.099) (0.0093) (0.0333) (0.0091) (0.1913) (0.0009) (0.0141)
(23) 11591 09709 05586 -12562 00006 -1.2883 -0.6867 30.7587 - -
(0.0119)  (0.0031) (0.0518) (0.0325) (0.0006) (0.09(B) (0.0182) (3.9916)

"Bi=0g, By=Pg, B3=0g, By =dor, Bs=Por Bs =001, B =0, By=Boz: By =002, o=

To test the reliability of all the tested stem taper
models, the observed and predicted volume values for
the sampled trees were calculated by Eq. (1). Table 3
lists the fit statistics for the taper and volume
models.

Another way to evaluate and compare the stem
taper and volume models is to examine the graphics
of the residuals at different predicted diameters and
volumes and to plot the Nadaraya-Watson (1964) ker-
nel regression. The residuals are the differences be-
tween the measured and predicted diameters over the
bark. Positive residuals indicate underestimation, and
negative residuals indicate overestimation. Residual
plots of all the fitted taper models are presented in
Figure 1 for Scots pine and Norway spruce trees. The
residuals suggested that Model 1 behaves similarly but
produced better fit statistics than the other tested
volume models. The residuals of Model 1 with fixed
tree butt and top are clustered at 0 for the butt and
top sections of the stems. Distributions of the resid-
uals are similar for both species.

tial equations stem taper Model 1 had more homoge-
neous variance than the other models.

Taper profiles for three randomly selected Scots
pine trees (diameters over the bark at breast heights
of 6.3 cm, 17.0 cm, 40.7 cm, and total tree heights of
6.8 m, 21.1 m, 30.3 m) and for Norway spruce trees
(diameters over the bark at breast heights of 9.9 cm,
28.0 cm, 37.0 cm, and total tree heights of 14.0 m, 20.1
m, 26.0 m) were constructed using stochastic differ-
ential equations stem taper Model 1 and are plotted
in Figure 3. Figure 3 includes the stem taper curves
and the standard deviation curves. It is clear that all
of the taper profiles followed the stem data very close-
ly. Graphical examination of these taper profiles leads
to the conclusion that stem taper Model 1 with fixed
stem bottom describes taper profile quite well.

Discussion and conclusions

For volume calculation, Lithuanian foresters use
the stem form-factor model created by Kuliesis (1972),
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Table 3. Fit statistics for all the tested Estimation Validation
* Equation
stem taper and volume models d MAB P AlC % Count. MAB P AlC =  Count
Scots pine
Taper models
(22) 09703 1.3889 34036  0.9841 3821 09162 13022 34932 0.9866 3962
(23) 0.9371 1.3807 33996  0.9843 3821 0.8833 1.2976 34895  0.9867 3962
M.1 0.9036 1.3372 33754  0.9853 3821 0.8578 12880 34845 0.9869 3962
M. 2 1.0612  1.5307 34778 0.9807 3821 0.9896 1.4418 35729  0.9836 3962
Volume models
(20) 0.0400 0.0674 98  0.9862 300 0.0393 0.0605 27 0.9886 298
(21) 0.0403 0.0693 99  0.9862 300 0.0411 0.0628 55 0.9876 298
(22)  0.0401 0.0675 109  0.9859 300 0.0395 0.0611 42 0.9882 298
(23) 0.0400 0.0681 106  0.9860 300 0.0394 0.0611 41 0.9883 298
M.1 0.0400 0.0639 71 0.9876 300 0.0400 0.0597 18  0.9892 298
M.2 0.0443 0.0732 153 0.9837 300 0.0454  0.0664 90 0.9862 298
Norway spruce
Taper models
(22) 0.9464 14377 60083  0.9815 6336 10062 15722 64692 0.9770 6663
(23) 0.9575 1.4927 60549 0.9801 6336 1.0416 1.6614 65391 0.9745 6663
M.1 0.9099 1.3360 59153 0.9840 6336 0.9501 1.4135 63624 0.9815 6663
M. 2 1.0758  1.6924 62143 0.9744 6336 1.1428  1.8821 66804 0.9685 6663
Volume models
(20) 0.0394  0.0625 334 0.9834 497 0.0446  0.0729 539 0.9755 524
(21) 0.0393  0.0623 338 0.9834 497 0.0444 0.0733 553 0.9750 524
(22) 0.0381 0.0628 348 0.9831 497 0.0428 0.0711 520 0.9766 524
(23) 0.0404 0.0673 411 0.9808 497 0.0468 0.0789 627 0.9713 524
M. 1 0.0423 0.0638 360 0.9827 497 0.0485 0.0779 596 0.9730 524
M. 2 0.0498 0.0706 460 0.9789 497 0.0506 0.0830 668 0.9691 524

* The best values of

fit statistics for all the taper and volume models are in bold
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which was the first attempt to identify the effects of
the different factors influencing the stem taper func-
tion using multi-factorial ANOVA. It was highlighted
that trees of one species have no permanent stem ta-
per curve and that stem form depends on the tree grow-

ing conditions, the total height of the tree, DBH, and
the length of the crown. As was shown by Lejeune et
al. (2009), the low reliability of the stem taper models
in the upper bole section can be explained by the lack
of diameter measurements in the upper bole sections.
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Figure 2. Nonparametric kernel regression curves for the
volume models: left — Scots pine trees; right — Norway
spruce trees

The Schumacher-Hall (Eq.(20)) and g-exponential
(Eq. (21)) volume models had very similar fit statistics
for both the estimation and validation data sets and
for both species. Both of the base taper regression
models (22)-(23) result in very similar fit statistics for
the both estimation and validation data sets and for
both species. The q-exponential segmented model (23)
performed the best for Scots pine trees, while the Kozak
model (23) performed slightly better for Norway spruce
trees.

The three stem taper models, Eq. (22), Eq. (23), and
Model 1, had very similar fit statistics. The best val-
ues of the fit statistics were produced by stem taper
Model 1 with fixed tree butt for the both estimation
and validation data sets and for both species. The
volume predictions by stem taper Model 1 also pro-
duced the best fit statistics for Scots pine trees.

The new taper models were developed using sto-
chastic differential equations. Comparison of the pre-
dicted stem taper and stem volume values calculated
using stochastic differential equations Models 1-2 with
the values obtained using the existing regression

30

Haight, m

= .
20 30
Diameter, cm

Diameter, cm

Figure 3. Stem tapers for three randomly selected trees gen-
erated using the stochastic differential equations Model 1:
left — Scots pine trees; right — Norway spruce trees.

models revealed a comparable predictive power of stem
taper Model 1 with fixed stem bottom.

The developed stem taper Model 1 may be recom-
mended both for their ease of fitting procedures and
the biological interpretations of the relevant parameters.

The stochastic differential equations approach al-
lows us to incorporate new tree variables, mixed-effect
parameters, and new forms of stochastic dynamics.

The variance functions developed here can be
applied generate weights in every linear and nonline-
ar least squares regression stem taper model the
weighted least squares form.

Finally, stochastic differential equation method-
ology may be of interest in diverse of areas of research
that are far beyond the modelling of tree taper.
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NCHOJb30BAHUE CTOXACTUUYECKHUX JU®PEPEHIIMAJTBHBIX YPABHEHUM 51
OINMMCAHMSA OBPA3YIOIIENA CTBOJIA U OBBEMA

J. Harpayckac, 3. baprkesuuunyc, II. Pynmmue, P. Memrayaac

Pesiome

IMoaxon, o6beanHAIOMMHA HHPOPMAIHIO, TeHEPUPOBAHHYIO PA3IMYHBIMU CTOXAaCTHYECKUMH Au(depeHINATEHBIMH
YpaBHEHUSMH, pa3paOdOTaH AJs MOBBIMICHUS TOYHOCTH IMPOTHO3UPOBAaHUS oOpasyromeil ctBona u o0beMa. CToXacTHUECKHE
Mozenu nuddepeHnnatbHbIX YpaBHEHUN oOpa3yromeil cTBojia U o0bemMa Obuld pa3pabOTaHBl Ha JaHHBIX COCHBI M €ld
OOBIKHOBEHHBIX, COOpPAHHBIX 110 Beel Tepputopuy JInTBel. HOBBIE MOIENH BBIBEACHBI 3 CTOXACTUUECKUX I (hepeHIHaTbHbIX
ypaBHenuit [omnepria u OpHinTeitHa- VieHOeka CpaBHEHBI ¢ KIACCHYECKOW MOJENbI0 oOpasyromieir ctBona Ko3aka u g-
HKCIIOHEHIIMAIbHOM CErMEHTHPOBAaHHON 0o0pasylomeil cTBoyia a Takxke ¢ Moxensio oobema Illymaxep’a-Xan’a u q-
SKCIIOHCHIUANBHONH MOJENbI0 00beMa, OCHOBAHHOIN Ha aJUIOMETPHYECKOW M TeoMeTphueckoil koHnenuusx. CpaBHEHHE
pa3paboTaHHON 0Opa3yoIel cTBosia M 00bEMa C MOJEISIMU, OCHOBAaHHBIMH Ha PErPECCHOHHOM aHalM3e, MOoKa3aau TyqHyIo
MOIITHOCTh IPOTHO3UPOBAHUSI CTOXaCTUUECKUX MU (epeHINaTbHBIX YPaBHEHUH.

KutroueBble ¢JIOBA: CTOXaCTUICCKUE III/Iq;)(i)epeHHI/IaJII)HI)Ie YpaBHEHUA, MOJCIN 06pa3y}0me171 CTBOJIa, MOJECIN o0bema.
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